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SUMMARY

In this pper, a critical comparison is made between experimental
and theoretical remil.tsfor the aeraiynsmic characteristics of wings at
supersonic flight speeds. As a preliminary, a brie~, nonmathematical
review is given of the basic assumptions and general findings of super—
sonic wing theory in two and three dihemiong. Publish&i data from twc-

. dimensional pressure4istribution tests are then used to illustrate the
effects of fluid tiscosity and to assess the accuracy of linear theory
as compred with the more exact theories which are available in the twc+
dimensional case. Finally, an account is presented of an NACA study,
previously unptilish&L, of the over-all force characteristics of three-
dimensional wings at supersonic speed. ~ this study, the lift, pitch-
ing moment, and drag characteristics of several families of wings of
varying plan form and section were measured in the wind tumnel and c-
pared with valmfj Praicijed by the three-dimensional linear theory.. The
regions of agreement and disagreement between experiment.and theory are
noted and discussed.

INTRODUCTION

The aerodxcs of wings at 8upersonic flight speed6 is currently
the subject of much research and discussion. As a result of many recent
investigh>io~, based.on the earlier work of Pra.ndtl,Ackeret, Busemamn,
and von Kammn, the theory of the subject is well advanced.,both as
applied to airfoil sections in two-dimensional flow and to complete, three—
dimensional wings. Experimental knowledge is, by contrast, considerably
less extensive, particularly with regard to the three-dimensional case.
There are, however, sufficient experimental data in hand to permit a rea–
sonably systematic comparison between theory and experiment. It is the
p~ose of this Pper to present such a,comparison insofar as the current
availability of experimental results will allow.

‘Paper presented at the Second International Aeronautical Conference,
, Institute ~f the Aeronautical Sciences @ The Ro@ Aercmautical Society,

New York City, May 2L27, 1949.
.
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TEEQBETICAL CONSIDERATIONS

To provide backgroti for those who are unacquainted with the funda-
mentals of supersonic wing theory, it may he useful to retiew briefly the
assumptions and findings of work in this field. (For a more ccinpletedis–
cussion of the theory and.a bibliograpfi of pertinent references, the reader
is referred to the Tenth Wright Brothers Lecture by Thecdore von K&m&,
.reference 1.)

In the solution of problems in supersonic wing theory, the following
assumptions are usmlly made concerrdng the flow field which surrounds
the wing: “

-.
(a) The fluid medium is continuous-‘andhomogeneom. ~

(b) The fluid has
Terfect *S

(c) viscosity smd

the thermxiynamic characteristics of a
with constant specific heats.

therml conductivityy are vanishingly small.
o

.

(d) External forces (such as gravity) are negligible.

For flight at ordinary altitudes and air temperatures, the most drastic
of these assumptions is that of vanishingly small tiscosity and thermal
conductivity. This assmption allows the effects of fluid friction and
heat transfer to be disregarded except as they are necessary to explain
the existence of shock waves and trorticeswithin the flow field. The
assumption thus retains the essential features of supersonic flow as it
is brown to occur away from the immediate vicinity of the wing surface.
It results, however, in the omission of the frictim drag and of any
changes in pressure distribution caused by growth or se~ration of the’
boundary layer.

On the basis of the fwego~ assumptions, it is possible to obtain
explicit relations for the sudden cha&es in flow which occur across a
shock wave as well as a differential equation for the gradual chapges
which take place h the regions between such waves. When expressed with
the geometrical coadinates as the independent variables, the clifferen-
tial equation governing the flow in the region between shock waves is ‘
nonlinear. It is therefore difficult to apply rigorously to most problems
of practical interest.

Fort&ately, in the special case of &n airfoil section in a two-
diamnsional supersonic stream, results can be obtained with a high degree
of mathematical rigor despite the nonl=ity of the governing differ– ,
ential equation. For reasons of mathematical practicality, it kas been ~

usual to restrict the solutians to @stances in which the local velocity
in the flow field.is everywhere supersonic. This limits the solutiohs to .
airfoils with a sharp leading edge and to angles of attack @ free+ tream

>
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Mach numbers such that the shock wave firm the leading edge is attatihed
to the airfoil and the flow on the downstream side of the wave is supersonic.
(It has also been customary to neglect the rotaticm of the fluid prticles
whi$h will exist aft of the leading-edge wave in those cases h which the
wave is curved, although thi~ approximation is not essential.) Within
these restrictims, section characteristics can be calculated to a high “
degree of precision for sections of even appreciable thickness. The method
of computation reduces in practice to a stepwise application of the known
relations far the compression through a shock wave and for the e-ion
around a convex corner. The procedure has therefore been termed the
‘1shock+xpansion” methcd (see, for _le, reference 2). For rapid cal– .
culaticms, more restricted methcds, such as Ackeretfs linear theory
(references 3 and 4) and BufIemmn?s second+der theory (references 5, 6,
and 7), can be obtained by _ of series approximation to the cmplete
equations for the shock wave and the expmsion.

I,nthe more praotical case of a complete, three+imensional wing,
the general mathematical problem is forbiddingly complex, and.it is nec–
essary to simplify the nonlinear differential equation at the outset in
order to obtain a solution. To accomplish this, it is assumed that the
local velocity at all points in the flow field differs only slightly in
maguitude and direction from the velocity of the undisturbed stream. This
implies, in effect, that the thictiess, caniber,and angle of attack of
the wing are-small. With this approximation, the complete, nonlinear dif–
ferential equation reduces, through the omission of terms of higher than
the first order in the flow disturbances, to a linear equation which can
be solved by established mtheratical methcd.s. On the basis of this equa–
tion, an extensive”body of theory has been formulated coverimg a wide
range of practical yings. For the present it will.suffice to mention
certain general concepts and results of this theory. _les of specific
calculations will be presented in the course of the later discussion.

A fundamental result of the linear theory, welJ.lmown by now, is the
concept of the Mach cone. According to this concept, the effect of a
given disturbance in a uniform s~ersonic stream is felt only within the
interior of a circular cone with vertex located at the point of the dis–
turbance and axis extend@=g downstream pamllel to the.origiul flow.
The geometry of the cone is determined by the requirement that the component
of free+ tream velocity normal to the surface of the cone is equal to the
speed of sound in the un?listurbedstream. It follows that the semi-
vertex angle of the cone is a function of the free-stresm Mach nmiber only.
These considerations apply not WY to the effects of an isolated dis–
turbance but to the region of influence of each disturbance in a dis-
tributed system as well.

The concept of the l&ch cone has immediate implications with regard
to the aercdym.mic problems of three-dimensional wings. This is illus–
trated in figure 1, which shows certain features of the flow over @ree ~
flat lifting surfaces of representative plan form. In the case of the
rectangular plan form A, for example, it follows from the concept of the

—-—— . .._ ~—. .—. -—. —-—--— —— -.—-—-
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Mach cone that,
are confined to
leading edge of

to a first a~roximation,, the effects of the finite sw ,
the regions of the wing Q5ng within the cone from the
each tip. The flow over the remainder of the wing (shown

shaded.)is identical with the two-dimensional flow over a wing of infinite
span. On the moderately swept plan form B, the flow over the shaded”
regions is, by the same reasoning, unaffect&l by the presence of either
the tips or root of the wing. Within these regions the flow can be treated
as essentia~y two-dimensioml by evaluating the velocity and the deflec-
tion angle in the direction normal to the leading edge. On the highly
swept plan form C, all of the wing is within the fields of influence of
the root and tips, and no regions of purely two-diinensimal flow are to
be expectexl.

Carrying these considerations a step farther, we UY also examine
the effect which the relationship between the plan form and the ~ch
cones has upon the chordwise lift distribution for the three wings. On
both wings A and B, where the leading edge lies ahead of the Mach cones
from the corners of the plan form, the Mach number of the component of
free+tream velocity normal to the leading edge is geater than one. For
reasons just examined, the lift distribution at the spanwise stati- for
which it is shown will be the &me as the distribution over a flat lift-
ing surface in a two-dimensional supersonic stream. Characteristic features
of this distribution are that the intensity of lift at the leading edge is

“ finite and has zero gradient in the chordwise direction. On plan form C,
where the leading edge is swept behind the Mach cone, the Mach number of
the fluw component normal to the leading edge is less than one. It develops
from the theory that in this case the lift distribution near the edge
resembles the theoretical distribution predicted by linear theory for a flat
lifting surface in a purely stisodc flow – th+t is, the lift intensity
tends to an inf~te value at the leading edge and drops off rapidly along
~he chord toward the trailing edge.

The foregoing clifferences in lift distribution protide cme example
of a general principle, the significance of which was first noted by
R. T. Jones (reference 8). This principle, which arises throughout the
study of wings by the lin- theory, can be stated as follows: When the
comp6nent of free+ tr6am velocity normal to a wing element (i.e., leading
edge, ridge line, or trailhg edge) is geater than the speed of souud,
the theaetical flow in the vicinity of the element has the essential char-
acter of the tw~imensional supersonic flow about an element of the same
geometric t~e; similarly, when the velocity component normal to the elememt
is less than the speed of sound, the theoretical local flow resembles
that which prevails in the two-dimensional mibsonic case. Because of the
utility of this general result, it has become customary to describe the
wing elements themselves as either ‘tSUperSOfiC]tor “subsotic.‘t TO
determine which category an element occupies, it is obtiously sufficlent,
as in figure 1, to note whether it is swept ahead of or behind the Mach
cone. It is appsxept that a wing element may ckinge from one c3assi–
fication to the.other as its orientation relatiye to the Mach cone is
chE@ea . This can be brought about by variation in either the free-str=

Mach number or the geome@y of tie ~. . ,
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As a result of the inherent differences in the flow about supersonic
and stisonic elements, theoretical calculations for three-dimensional
wings indicate marked and interesting changes in the flight characteristics
with changes in Mach number or wing geometry. By studying these effects,
wing shapes can be found which afford optimum aerodynamic characteristics
for a given flight condition. The results of such studies, indeed, provide
a valuable guidance to the aircraft designer. ~ antici~tiun of the experi–
mental results to be presented.later, however, a word of caution is in order
here. As ex.emylifiedin figure 1, the differences in theoretical pressure
distribution between a supersonic and subsonic element may be characterized
by large differences in chordwise pressure gradient. These differences “
may, in a real, tiscous meaium, give rise to corresponding differences in
boundary-layer flow and hence to aerodynamic effects which are beyond the
scope of the inviscid theory. As a result, the true variation of the wing
characteristicswith change in Mach nuuiberor wing geometry =y be con-
siderably different from that predicted by the theory. The later experi–
mental results with regard to the drag of triangular wings supply sm excellent
example of such an effect.

In anticipation of the e~erimental data, it should also be pointed
out that the concepts and results of the linear theory, based as they are
upon the assumption of smll disturbemceb, constitute only a first-order
approximation to the truth even for the s~osetily inviscid gas. When
disturbemces of appreciable magnitude are considered, the previous concept
of a Mach cone traversing the entire fluw field is no longer tenable. On “
the contrary, a given disturbance in a supersonic stream is then confined,
not to the interior of a cone, bti to the-interior of some more complex
surface whose shape and position depend upon the magnitude of the disturb-
ance as well as upon other conditions in the general flow field. It follows
that the regims of influence of a wing tip or wing root are not strictly
as shown in figure 1, and the previous distinction between a supersonic and
subsonic element cannot be applied without qualification. .The ideas of
the linear theory with regard to pressure pr~gation, therefore, should
not be taken literally nor should deductions based upon them be accepted
without reservation.

It is apparent frmn these brief theoretical comiderations that
calculations by the linear theory may be expected to fall short of the
truth for

(a)

. (b)

two primary reasons. ihese are -

the omission from the theory of all viscous phenomena, and

the theoretical assumption that the flow disturbances are
small.

The importance of these a~roximations cahnotibe assessed at present from
purely theoretical knowledge. Sme insight is provided, however, by the
available experimental results.

—-–- ——-——————–--—–- –——.—--——-–– ——–----—- — - -



.

6

, PREs~IsmIBuTIom

It is desirable to begin the

,

NACA TN 2100

~ IN TWO DIMENSIONS

comparison between theory and exper-
iment by examidng some typical pressure4istribution results for an air-
foil section in a twqimensional supersonic stream. Because of the
availability in the two+iimensioml case of theories of greater accuracy
than the linear theory, it is possible here to distinguish between the
effects of viscosity azldthe effects of the terms neglect~ through the
assumption of small disturbances.

.

A typical twtiimensional pressure distribution is given in figure 2,
which shows the calculated and measured results for a l~ercent-thick,
symmetrical, biconvex section at a Mach number of 2.13 and an angle of
attack of 10°. The local pressure coefficient is plotted as a function
of the chordwise position on the airfoil, positive values being plotted
below the horizontal axis and ne~tive values above. The theoretic-alyres–
sure distributions given by the linear and shock+xpansion theories are
shown by curves as noted. The individual circles indicate experimental n
points obtainei from the results of Ferri.(reference 9).

The data of figure 2 shuw that considerable accuracy is gained by
going from the linear to the shock-expansion theory. Over most of the air-
foil section, the linear theory predicts the correct sense for the pressure
gradient, but the quantitative agreement between the cwve given by this
theory and the experimental points is poor ccmpred with the excelient
check given by the shock+xpansion methcd. Over the rear h percent of the
upper surface, neither of the theories agrees with the trend exhibited by
experiment.

The discrepancy between the theoretical pressure distributions cal-
culated by the linear and shock-expansion theories is of importance pri–
marily for its effect upon the chordwise distribution of lift. Examination
of figure 2 reveals that the total lift of the section> as approximated
by the area between the curves for the upper and lower surfaces, is given
almost identically by the two theories. This illustrates the fact that in
the twtiimensional case rthehigher-order terms qeglected in the linear
theory have little effect upon the over-l-l lift of the section. They do,
however, serve to concentrate the Iifi far~~ fo~d ~ the chord t- the
linear theory would predict. This effect is essentially a consequence of
the airfoil thickness and diminishes as the thickness is reduced.

The failure of even the shock-expnsion theory to predict the pressure
variation over the rear part of the upper surface is due to shock+ve,
boundery-1.ayerinteraction (reference 9). In the idpalized, titiscid
fluid, the two-dimensional flow over a lifting airfoil at supersonic speeds I
is characterized by an oblique compression wave originating on the upper
surface at the trailing edge. In the real, viscous fluid,
is mcdifieil.by an interaction between the oblique wave and
boundary layer on the airfoil surface. The boundary lay8r

this flow-pattern
the viscous
seprates tiom
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,
the upper surface some distance forward of the trailing edge, with the
formation of a weak compression wave at the separation point and a conse-
quent increase in pressure between this point and the trailing edge. There
is, as a result, a noticeable loss of lift over the rear of the airfoil.

The foregoing results, of course, imply certain deviations of the true
aerodynamic coefficients frmn the curves predicted by the linear theory.
For the reasons outlined, the higher-order pressure effects neglected in
the linear theory have little influence upon the lift+urve slope, although
they do result in a relatively forward shift of the center of pressure
(oraercxiynamiccenter). The interaction between the trailing shockwave
and the viscous boundary layer acts both to decrease the lift-curve slope
slightly and to displace the center of pressure still farther forward.
Viscous friction, the effects of which are not visible in the pressure

. distribution, tends to increase the true drag relative to the calculated
value, though this tendency is opposed.here by the unpredicted increase
in pressure near the trailing edge as the result of the shock+ave, boundaz&
layer interaction. All of these effects are apparent in the available
force-test data for airfoils in two-dimensional flow (reference 9 and 10).
As will be seen, they are also observed in the resplts for three=imensional
wings, at least for those cases in which the wing elements are predominately
supersonic.

FQRCE TESTS IN THREE DIMENSIONS ~

The discussion to this point has been conftied to theoretical con-
sideratims and.to a comparison between theoretical ahd experimental
results for a typical airfoil section in two4iimensional flow. The remin–
der of the paper will be concerned.with a mae general comparison between
theory and experiment for complete, three+iimensionalwings.

The results upon which this comprison is based were obtained in 1946
as part of an ~vestigation of wing characteristics conducted at the
@es Aeronautical Laboratory of the NACA. The portion of the general ‘
investigation to be discussed here was concerned.with force teits at
supersonic speeds of apprcmimately 30 Wng maiels chosen to cover a wide
range of geometric variables and to include examples with both supersonic
and subsonic wing elements. The experimental work was performed in the
Ames l–by 3–foot supersonic wind tunnel No. 1, which is a continuous–
flow, closed+ eturn tunnel of approximately 10,000 horsepower.2

The wing maiels were supported in the wind tunnel ona slender baly
of revolution mounted directly ahead of a three-component, strain+ge

2As with most experimental investi&tions, many people contributed to the
final results of the study. particular credit is due, however, to
Jack I?.Nielsen, Milton D. Van Dyke, and Frederick H. Matteson, who
participated in the analysis of the results, to Robert T. Madden,
Richard Sche?!rer,and John A. Blackburn, who conducted the wind-tunnel
tests, and to Albert G. Oswald, who was in charge of”the wind-tunnel-
instriunentation.

...-—...-. ...’—-— —. —–— ...—.—— —–-— —..—. —----



8 NACA TN 2100. .

balance as shown in figure 3. For the m jority of the mcd.els,the airfoil
section taken in the streamwise direction was a fiercent-thick isosceles
trianglq, that is, a triangle with mximum thiclmess of 5 percent located
at midchord. TMS cambered section was chosen primarily for ease of con-
struction. The mcdels were made of hardened, ~ou.nd tool steel with the
leading and trailing edges ~intain&l Eharp to less than a.O.001-inch radius,
except for certain tests in which the leading edge was purposely rounded.
The support body, which was the same for all models, was kept as small as
possible consistent with the requirement that it could be used with a wide
range of plan forms.

Because of the presence of the s~ort bcdy, the experimental results
to be presented apply, strictly speaking, to wing+cdy combinations rather
than to the wings alone. The theoretical curves are, on the other =>
for simple, isolated wings. A detailed examination of the interference
problem indicates that, for the particular baly used here, the effects of
the bcdy are small insofar as the lift and pitching moment are concerned.
The influence on minimum drag may, however, be co~iderable. me meas~~
values of the minimum drag coefficient must therefore be regnxied as of
primarily qualitative significance in comparison with theory.

,

Because of limitations of time and space, it is obviously impossible
ina pper of this Hnd to discuss more than a small portion of the results
obtained in the investigation. The data presented wi12 therefore be chosen
primarily for their value in illustrating certain general ideas or typical
conclusions. This approach will result in theamission of many interesting
items dear to the heart of.the experimentalistjbut it is hoped that an
adequate over-all picture of the significwt results will emerge. b-all
of the figures presented, the aerodynamic coefficients wild.be referred to
the @an-formarea of the wing, incltiing that portion of the plan form
enclosed by the support body. AIL of the results are for a free-stream
Mach number of 1.53 and a test Reynolds nuniberof O.n millicmbased upon
the mean geometric chord of the wing. Unless stated otherwise, it maybe
assured that the results were obtained.usingmcdels with the cambered,
isosceles-triangle section previously described.

~ the discussion of the results, it is convenient to consider first .
the lift and pitching moment, since these characteristics depend primarily
upon the distribution of normal pressure over the surface of the wing.
The consideration of drag, which depends upon the frictional forces as
well.,will be deferred until later.

.

Lift and Pitching Moment

According to the linear theory, the lift and pitching+mment curves
for any given wing are eacha straight line. At a given Mach number, the
s-lopeof the line depends solely upon the plan form of the wing ‘andis
independent of the camber and thicbess. The intercept – that is, the

.—— _..
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anqle of zero lift or the moment at zero Et -
camber and the @lam form, but is fidependent of
the slope of the”curves till be discussed here,
acteristic c& greatest ~ctical importzmce.

is a function of both the
the wing thiclmess. Only
since this is the char-

Lift-curve slope.- The nature of the agreement between theory and
experiment with regard to the lift-curve slope for unswept wings is illus-
trated in figure k. Here ~/da is plotted as a function of aspect ratio
for a series of four unswept w@y3 having a common taper ratio of 0.50
The wing corresponding to each test point is indicated by a small eketch,
which shows also the imace of the l&ch cones from the forwardmost yoint
of the wing. On this and later figures, the variation predicted by the
linear theory is shown over as wide a range as is practicable on the basis
of existing computational methods.

The agreement be&een theory and experiment in figure 4 is seen to
be excellent over the entire range of aspect ratios. The e=ct coincidence
for aspect ratios from 2 to 6 is, in fact, too gOOa to be absolutely -&ue.
It appears likely that”the secondary effects of viscosity and supporWmdy
interference, which must certainly be present in some degree, are completely
compe~ating for these wings. The decrease in Mft-curve slope observed
both experimentally and thecmetically at the low aspect ratios is caused
by a loss of lift within the Mach cones which originate at the leadlng edge
of the wing tips. As the aspect ratio is reduced, a greater and greater
percentage of the plan form is included within these ~ch cones, with a
resulting decrease in the lifting effeotiveriessof the wing.

o

The effect of wing sweep on the slope of the lift curve is illustrated
in figure 5. Here dCL/da is shown as a function of the sweep angle at
the midchord line for a series of seven wings also of tdper ratio 0.5. The
unswept wing of this series is identical with tileaspect+’atio-4 wing of
the previous figure. In the design of the swept wings, the aspect ratio
was We to decreaqe as the cosine of the angle of sweep, since wings of
constant aspect ratio did not appear structurally feasibl”e. The sweep
angles were chosen to provide representative plan forms with both supersonic
and subsonic leading and trailing edges. The wtng of 43° sweepback was
designed to have its leading edge coincident with the Mach cone, which has
a sweep angle of 49.2° at the test Mach number of 1.53. Since the sweep
angle of these wings is specified at the midchord line, a given swept-
forward wing can be obtainai from the corresponding swept4ack wing by a
simple reversal of the direction ‘ofmotion.

The agreement between theory and experiment in figure 5 is almost
exact over the range of sweep angles from O0 to 43° sweepforward, the
forwardmost limit of the themetical results. For all of the swep~ck
wings, the experimental slopes fall.consistently below the theoretical
values by from 8 to 10 percent. In both the swept+ack and swept-forward
direction, the experimental results exhihit a marked reduction in dCL/da
as the edges of the plan form are swept increasingly farther behind the

Mach cone. This trend is predicted by the theoretical curve in the

-———.. . —-. — —..—-— .. —--— —-—.—— —— —.— -- —-—--—- ——-—-— —.. — _____
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swep~ck case and would undotitedly be confirmed for the swept-forward
wings if complete theoretical results were available.9 It is interesting
to note, incidentdly, that the 43° swept+ack wing, which has its leading
edge coticident with the Mach cone, shows no d-ure from the general
trend of the experimental results.

For the range of sweep angles between *430,’the theoretical curve of
figure 5-Is exactly symmetrical about the vertical axis. This means that,
within thts range, the theoretical lift-curve slope of a plan form of the
present series is unchanged by a reversal of the direction of motion. A
similar result has been obtained by several authors for other, more general
classes of wings (see, for example, references 11 and 12), though the limits
of generality have not, to the writerts knowledge, been completely estab-
lished.4 The observed deprture of the experimental results from the
theoretical symmetry may be due to differences in aeroelastic deformation “
between corresponding swept-forward and swept+ack wings or to asymmetry
in the effects of other secondary factors such as tiscosity and suppor&
body interference.

?
To S~ ize, we may say that the agreement between experiment and

linear theory with regard to the lift-curve slope of three-dimensional
wings is satisfactory for most practical purposes. In tiew of the sit-
uation previously observed in the twc-dimensicmal case, however, it cannot
be assumed that a~eement in the integrated lift implies complete agreement
in the details of the lift distribution.

~oment+urw slope.– Ftier indication that the details of the f1A
over the wings are, as in the two+iimensional case, somewhat different
from the predictions of the linear theory is given by the pitching+mment
data. Figm?e 6 shows the moinentiurve slope as a function of aspect ratio
for the series of unswept wings previously discussed. The mmnent coefficient

%or the range of sweep angles from 43° to 600 sweepback, the shape of the.
theoretical curve is somewhat approximate. strictly speaking, small di6–
continuities in the slope of the curve would be expected at approximately
43° and 55° where the leading edge and trailing edge of the plan form coin–
tide, respectively, with the Mach cone. No attempt was made to determine
these discontinuities, the theoretical curve being faired smoothly
through the available calculated points.

4Since the prqsent paper was written, the theoretical result obserti here
has been established with complete generality with regard to plan form
by Clinton E. Brown of The Langley Aeronautical Laboratory of the NACA.
(See mown, Clinton E.: The Reversibility Theorem for Thin Airfoils in

‘Subsonic and Supersonic Flow. NACA ~ 1944, 1949.) ACCOrdiIl$ to 13rOWU~ S

proof, which is based upon pretious work by Max M. Munk, the theoretical
li~uve slope of a given wing is, to the first order, invariant with M

. respect to a reversal of the directim of motian, irrespective of the
Mach number or shape of the plhn form.

M

———— .
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is here taken about the”centroid of plan-form area, with the mean aeraly–
namic chord as the reference length. The moment-curve slope is thus an
approximate measure of the displacement of the aerod=ic center of the
wing forward of the centroid of area, express&d as a fraction of the mean
aerodynamic chord.

It can be seen from figure 6 that the linear theory predicts a progress-
ively forward displacement of the aerodynamic center as the aspect ratio
is reduced. As in the case of the lift-curve slope, this Variatim is due
to the loss,of lift which occurs over the rear portion of the wing within
the Mach cones from the tips. The trend of the experimental values is in
agreement with the theoretical curve, but the forward displacement is
uniformly grmter than the theory predicts. The reason for this discre~
ancy becomes apparent if we imgine the wing series of figure 6 to be
extended to indefinitely high aspect ratios. In the limit of infinite
aspect ratio, the flow over the wing would be purely twtiimnsional, and
the theoretical characteristicswould be simply those of the wing section.
For the present isosceles–triangle section, the values of dCm/dCL @ven by
the linear and shock-expnsion theories are as indicated by the two hori–
zontal lines to the right. The theoretical curve for the finite-span wings,
of course, approaches the linear section value as an asymptote. If Ody

nonvi.sco.yseffects were important in the experiments, the measured curve
would be expected to approach the section value p“redict&lby the shock—
expansion method. The fact that it seems to approach an asymptote above
this latter value is consistent with the occurrence of shock wave, bounhry–
layer interaction near the supersonic trail@g edge as previously observed
in the twtiimensional results (fig. 2). We may thus infer that the dis–
crepancy between experiment and linear theory over the entire range of
aspect ratios is due to a ccmibinationof both higher+rder pressure effects”
and fluid viscosity.

The effect of sweep on the moment-curve slope is shown in figure 7
for the same series of wings used,before. It is apparent that here ex–
periment and theory agree neither quantitatively nor qualitatively. For
the unswept wing, the observed discrepancy canbe accounted for as explained
in connection with figure 6. The disagreement in the variation with angle
of sweep is, however, difficult to reconcile on the basis of present knowledge.
In general, the effects of boundary-layer separation maybe expected to have
a major influence on the moment characteristics of swept wings, particularly
in those cases in which the wing elements are predominately subsonic. me
possible importance of the higher+rder pressure effects should not be over–
looked, however. It can be shown from quite general considerations that the
calculation by the linear theory of the aerodynamic-center position for any
given wing is subject to a possible error of the same order of magnitude
as the percent thickness of the airfoil section. For this reason, the
development of a reasonably general, second+rder wing theory may prove
essential to a complete understand.ing

,

of the pitching+mment-probl~m.

—___ .- _ .._ . .—.—z .__— _.——___ ___ _ __
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Drag
.

The calculation of wing drag by the linear theory leads to a parabolic
curve of drag versus lift. The value of the minimum drag coefficient
depends, for a given Mach number, upon the thictiess, catier, and plan form
of the wing, while the lift coefficient at which the minimum occurs is a
function of the camber and plan form. The rise in drag as the lift coef-
ficient departs from that for minimum drag depends, according to the linear
theory, upon the geometry of the plan form only.

Minimum &a R.–A typical illustration of the effect of cha&e In plan
form on the minimum drag is given in figure 8, which shows the variation
in minimum drag coefficient for the previous series of swept wings. The
theoretical curve shown is for the pressure drag only –that is, no attempt
has been made to estimate the skin friction. Because of the mathematical
complications introduced by caniberwhen the edges.of the wing are subsonic,
it was not practicable here to extend the theoreticallcurve beyond 43° in
either direction. Within these limits, the ”theoreticaldrag increases with .
increasing sweep. Extension of the curve to higher angles of sweep would
be expected to show a marked decrease in the Calculatd drag, similar to
the well-known results for uncambered wings swept behind the Wch cone. .

The experimental curve of figure 8 folkm the general trend indicated
‘by theory. As the sweep increases from zero in either direction, the
measur~ drag first rises to a maximum in the vicinity of the Mach cone and
then decreases markedly with further increase in sweep. The large decrease
ind.rag obtained by sweeping the wing behind th~ Mach cone has been observed
by numerous investi~tors and need not be enlarged upon here. What is more
interesting in the present results is the failure of the experimental values
to rise as rapidlyas does the theoretical cuz%e in the lower range of sweep
angles. For the wings of 0° and ~300 sweep, the displacement of the experi-
mental points above the theoretical curve is consistent with a reasonable
allowance for skin friction and s~ort+ody interference. For the wings
of +43° sweep, however, the experimental values are almost coticident with
the theoretical. This result suggests that the linqar theory naybe overly
pessimistic regarding wing tiag when the Mach number normal to the wing
elements is near unity. Support for this conjecture is found in the work
of Hilton and Pruden (reference 10), who report a similar situation in two-
dimensional tests of an airfoil section at mtierately supersonic speeds.
It is likely that in both instances the results are due to transonic effects
which are beyond the scope of the linear theory.

The symmetry of the curves of figure 8 is also worthy of note. It has
been shownby several authors (see, for example, references land 12) that,
to the order of accuracy of the linear theory, the minimum pressure drag of .
a wing of any plan form is unchanged by a reversal of the direction of
motion, provided the wing section is without camber~ For caniberedwings,
the corresponding drag theorem is probably less general vith regard to plan -
form, though, as in the case of the lift-curve slope, the limits of generality
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have not yet been defined. For the present wings reversibility is readily “
Aproven over the range of sweep ax@es between*k3 . As a result, the theo-

retical curve of figure 8 is, like the corresponding curve for dCL/da in
figure 5, exactly symmetrical over this interval. In spite of the theoret-
ical result, however, the almoti perfect symmetry of the experimental curve
of figure 8 comes as somewhat of a surpris,e. It might be qected that
secondary differences between corresponding swept-forward and swep~ck
wings would cause anasymetry here akinto that observed in the experimental
values of liftiurve slope.

The most interesting results with regard to drag, however, are concerned
with the effects of thickness distribution on the minimum drag of triangular
wings. At about the time the p?esent study was beginning, theoretical
results by Puckett appeared (reference 13) which indicated that the minim&
pressure drag of an uncambered triangular wing with a subsonic leading edge
could be held to a relatively low value by proper location of the position
of’maximum thickness. To check these results, two triangular wings of
aspect ratio 2 were included in the present sttiy~ Both wings had an
uncanibereddouble+edge section with a thiclmess ratio of 5 percent. ~
one case the.maximm thiclmess was located at midchord, in the other at a
position 20 percent of the chord aft of the leading edge.

The findings for these wings are susgarized in figure 9, which shows
the theoretical and experimental values of the minimum drag coefficient
plotted as a function of the positiun of maximum thickness. The curve of-
theoretical pressure drag, which is representative of Puckett?s results,
is divided into two parts bya sharp break in slope, located in this
instance at h2 percent of the chord. For points to the right of this break,
the ridge line defined by”the position of maximum thickness is supersonic,
and the fluw around the ridge resetiles the supersonic flow around a convex
corner. Under these conditions, there is little pressure recovery over the
rear of the wing, and the drag is relatively high. For points to the left
of the break, the ridge line is subsonic, and the local flow is of the char—
acteristically subsonic type. .Underthese conditions, the pressure recovery
over the rear of the wing is considerable, amd the drag is correspondingly
reduced. For the wings under consideration, the nqt result of moving the
maximum thicbess forward frum the %percent to the 20=percent station is
tq reduce the computed pressure~ag coefficient from O.CK@2 to O.~54.
Unfortunately, the measured values of the minimum drag, indicated by the
two small circles, do not follow the theoretical trend. The apparent
effect of the forward displacement is, in fact, to increase the drag slightly.

When this result was first noted, the experimental data were suspected
of being in e~or. Repeated tests, howevpr, gave identical results. It
was next thought that support+cdy interference might be to blame. Esti–
mates indicated, however, that such interference could hardly account for
the large difference in the increments by which the measured total drag
exceeded the computed pressure drag for the two wings. Consideration of
the friction drag finally supplied the key to a possible explanation. To
examine this possibility, curves of theoretical total drag were computed

. .
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on the basis of the s~–friction coefficients corresponding to completely
laminar and completely turbulent flow in the Imudary layer. When this was
done, it was found, as is apparent in the figure, that the e~erimental
point for the wi& with mximum thickness at 50 percent fell midway between
the two resulting curves, while that for the wing with maximum thiclmess
at 20 percent was slightly above the curye for completely turbulent flow.
This suggested that the failure of the experimental points to follow the,
trend of the theoretical pressure drag might be due to a difference in the
extent of laminar boundary-layer flow on the two wings.

To check this hypothesis, the liquid-film methai developed by Gray of
the R .A.E. for the hiication of transition at subsonic speeds (reference 14)
was @apt@ for use in a supersonic stream. This methcd depends upon the
fact that the rate of evaporation of a film of liquid on the surface of a
mcdel is, on the average, greater where the boundary laypr is turbulent
than where it is laminar; In applyiti this principle at the Ames Laboratory,
the mcdel is first ccated with flat blqck lacquer and then, immediately
prior to installation in the tunnel, with a liquid mixture containing
glycerin. A run is then made at the desired test condition for a sufficient o
time to allow the liquid to evaporate completely in the turbulent regia
but reuin moist over most of the laminar area. Upon removal from the tunnel,
the mmiel is dusted with talcum powder, which adheres to the laminar but .

not to the turbulent area, thus increasing the contrast for photographic
p~oses and-protiding a char indication of the extent of the two types
of boundary-layer flow.

The results of liquid-film tests of the two triangular wings at zero
lift are showi in figure 10.. For the wing with maximum thickness at midchord,
the region of turbulent flow, which appea?% as the dark region on the mdel,
constitutes only about half of the surface area aft of the ridge line. For
the wing with maximum thickness displaced foruard, the turbulent region
occupies almost all of t~e considerably larger area which is aft of the
ridge line on this wing. These results were repeated many times during the
numerous tests necessary to perfect the liquid-film technique. Examination
of calculat~ pressure distributions for the two wings shows in each case
excellent correlation between the experimentally determined region of
turbulent flow and the calculated region of adverse pressure gradient.

.

Because of the effects of support+aly interference, it is not possible’to ,
make a decisive coqarisa between the measured values of total drag and
theoretical values calculated on the basis of the observed areas of laminar
and turbulent flow. The evidence of the liquid-film tests, however, leaves
little doubt as to the primary re+son why forward displacement of the maximum
thickness fails to prcduce the reduction in minimum drag predicted by the
intiscid, linear theory. .

5
The white streaks extending back into the otherwise dark turbulent area are

.

streamers of excess liquid blown tick from the lamtnsr region. These
streamers may at times be used as a valuable indication of the direction .

of flow @thin the boundary layer, particularly on highly swept wings.

. ——— ——
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. . The foregoing-result has important implicationswith regard to the
degree of drag reduction possible at supersonic speeds through the use of
sweepback. The relatively high preswre &ag of an unswept wing at speeds
above the speed of sound is a direct result of an absence of pressure
recovery over the rear of the wing. The high pressure drag is thus asso-
ciated with a chordwise pressure gad.ient which is, for the most part,
favorable to the boumdary-layer flow. The reduction of p?essure drag by
means of sweepback depends, on the other hand, upon the presence of an
appreciable pressure recovery, or in other words, upon the existence of a
region of adverse gradient. If the region of such gradient occupies the
major portion of the wing, then, as was seen in the case of the triangular
wing with tbSclmess forward, the detrimental effects upon the skin friction
may more than offset the gains in pressure drag. This suggests that it may
be desirable here, as in the case of the subsonic, luw-drag airfoil, to look
for w- shapes which have their pressure recovery confined to a relatively
sndl part of the wing area. Wings of this type may, in fact, prove more
practical at supersonic than at subsonic speeds, since there is indicatim
(reference 15) that the boundary-layer phenomena at the higher speeds may
be more conducive to long ruus of laminar flow..

Bras rise and lift+irag ratio.- The final question to be discussed is
that of the variation in drag with change in lift. As previously mentioned,
the theoretical curve of drag versus lift is, for any given wing, parabolic
in shape. The rise in drag as the lift coefficient departs from that for
minimum drag depends, for a given Mach number, on the wing plan form only
and is independent of the camber and thichess. The shape of the theo-
retical parabola for a given wing is thus identical with that for a flat
lifting surface of the same plan form as the wing in question.

In the case of a plan form with a supersonic leading edge, the deter–
mination of the rise of the theoretical p.rabola is relatively simple.
In this case, which is exemplified by plan forms A and B of figure 1, the
local pressure on the flat lifting surface is everywhere finite. The
variation in drag with change in lift can thus be found by simple integra–
tion of the pressures acting on the top and.bottom of the surface. For all
of the wings of the present study having a supersonic leading edge, the
s~pe of the drag curve given by the theoretical calculation shuws god.
agreement with experiment.

.

In the case of a wing with a subsonic leading edge, the theoretiml
problem is more complex. In this case, exemplified by plan form C of
figure 1, there is a slngilarity – that is, an infinite value – in the

theoretical lift intensity at the leading edge of the equivalent flat
surface. The effect of this singularity is to praluce a finite suction
force on the l-ding edge in the dtiection opposite to the free stream.
This force – sometimes referred to simply as ‘tleading-ed.gesuctionlf—
reduces the rise of the theoretical drag parabola below what it would be
if cmly the pressures on the top and bottom of the wing were considered.
Actually, of course, the details of the flow about the leading edge must, -

\
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in any real case, Ye considerably different from the representations of
the linear theo~, since an infinite lift intensity is ohtiously impossible. 8
It does not follow, however, that the theoretical forward force at the lead–
ing edge will not exist. The situation here is much the same as that
encountered at the leading edge of an airfoil secticrnin two-dimemional,
incompressible flow. ~ this latter case, it is lumwn, %oth from ex&riment
and from the indications of more refined calculations, that the elementary
theory gives inaccurate prediction of the leading+dge suc%ion within

, certain limits of angle of attack and leading-edge radius. The<range of
applicability of the linear theory as applied to swept wings at supersonic
speeds must similarly be established by careful theoretical and experi-
mental-investigateon.

The results of the present study are not, in general, conclusive
with re~rd to the conditicms necessary for the attainment of the theo-
retical force at the s&sonic edge. The data for the triangular wings,
however, do offer some possibly si@f icant findings. These are illustrated
in figure 11, which shows the effects of change in wing section upon the
drag due to lift for the triangubr wings previously discuss@. The two
theoretical curves show the calculated drag rise with the leading+dge

.

suction both included and omitted.
,

For the wing with maximum thictiess at
midchord, the experimental curve is slightly above the theoretical curve
with leading+dge” suction mitted.

.
This is as might be expected for a

sharp-edged wing, the slight increase above the upper theoretical curve
being due possibly to an increase in friction drag with increasing lift or
to supportAmdy interference. Moving the maximum thiclmess forward on
the wing to the 20=percentihord position resulted in a slight reductim in “
drag despite the retention of a sharp leading edge. This gain may be due
either to the attainment of leading-edge suction as a result of the larger .
li?adhg+ge wedge angle on this wing or to a change in the variation of
friction drag with lift. @ an attempt to bring the drag rise of the second
wing doiznto the values indicated by the complete theory, the edge of this
wing was rounded to a radius of 0.25 yercent of the chord, which is of the
same order of magnitude as the radius of an NACA low-drag section of canp-
rable thickness ratio. This roundhg of the leading edge afforded some
benefit,.the resultin& experimental values being a~oximately midway between
the two theoretical curves. Additional rounding – to ‘aO.>yercent radius
over the entire’span and then to a still greater ~lue over the outer half –
had no further effect.

The influence of the foregoing changes on the eqerimental curves of
lift-drag ratio is sham h figure 12. The wing with maximum thickness
at midchord has a value of (L~)= of about 6.3. When the mximum thick-
ness is moved forward to the 20=percen*hord station, the decrease in
tiag rise apparent in figure 11 more than outweighs the slight increase in
mimimum drag observed in figure 9. As a result, the m.ximum lift-hag ratio -
increases slightly. Rounding the leading edge of the second.wing, while
reducing the drag rise as previously noted, does not alter the minimum drag.
As a consequence, the maximum l.iftArag ratio is increased to approximately ●

6.8. These results suggest that the aerodynamic gains predicted on the
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basis of the theoretical leading-edge suction can be at least partially
realized in practice. The determination of the optimum profile shape for .
this purpose may, however, involve considerable detailed research.

It is interesting for contrast with the foregoing results to point
out the detrimental Hfectq at the test I@ch number of rounding the leading
edge on an ~.ept wing. In tests of an unswept, untapered wing of aspect
ratio k, rounding the leading edge to a radius of 0.25 percent of the chord
resultti in a 27=percent increase in
in maxinnimlift+irag ratio from 6 to
was unaffected by the modification.

CONCLUDING

The foregoing results represent
body of experimental and theoretical
cerning the characteristics of wings

minimum drag ami a-consequent reduction
about 5.5. The rise in the drag curve

@y a snal.1contribution to the
knowledge nuu being accumulated con–
at supersonic speeds. As is the case

with most measurements of over~ll forces, the data of.the present study
raise more questions than they answer. Detailed and ~tient investigations
of pressure distribution and bounda&layer flow are required to develop a
rational explanation for mahy of’the observed phenumena. “Severalmajor
problems have not been discussed here at all, including the important question
of the adequacy of the Kutta condition to describe the real flow at a
highly swept, subsonic trailing edge. There is
indeed, to keep many investigators occupied for

Ames AWonautical Laboratory,

sufficient to be done,
years to come.

National Advisory C=ttee for Aer-utics,
Moffett Field, Calif., my 3, 1950.
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